(An Autonomous Institute Affiliated to CSVTU Bhilai) ### SCHEME OF TEACHING AND EXAMINATION B. Tech. Eight Semester- MECHANICAL ENGINEERING #### Effective from 2023-2024 Batch | Effective from 2025-2024 Batch | | | | | | | | | | | | | |--------------------------------|------------------------------|---|----------|----------------|---|---------------|----|-----|-------------------------------|-----|----------------|--------| | Sl.
No. | Board of
Studies
(BOS) | Courses | Category | Course
Code | | iod j
Veek | | Exa | heme
minat
eory/L
CT | ion | Total
Marks | Credit | | 1 | Mechanical
Engineering | Industrial
Engineering and
Management | PEC | ME107801 | 3 | 1 | 1 | 100 | 20 | 30 | 150 | 4 | | 4 | Mechanical
Engineering | Professional
Elective IV * | HSMC | table IV | 2 | 1 | 1 | 100 | 20 | 30 | 150 | 3 | | 5 | Mechanical
Engineering | Open Elective III ** | HSMC | table V | 3 | - | - | 100 | 20 | 30 | 150 | 3 | | 6 | Mechanical
Engineering | Industrial Engineering and Management Lab | PEC | ME107891 | - | - | 2 | 25 | - | 25 | 50 | 1 | | 7 | Mechanical
Engineering | Micro and Nano
Manufacturing Lab | PCC | ME107892 | - | - | 2 | 25 | - | 25 | 50 | 1 | | 8 | Mechanical
Engineering | Capstone Project
Phase II | PSI | ME107893 | - | - | 16 | 300 | - | 150 | 450 | 8 | | | | Total | | | 8 | 2 | 20 | 650 | 60 | 290 | 1000 | 20 | L : Lecture, T: Tutorial, P : Practical, ESE: End Semester Exam CT: Class test TA: Teacher's assessment #### * Table IV : Professional Elective - IV | Sl.
No. | Board of Studies (BOS) | Courses (Subject) | Course Code | |------------|-------------------------------|---------------------------------|-------------| | 1 | Mechanical Engineering | Energy Audit and Management | ME107821 | | 2 | Mechanical Engineering | Non Destructive Testing Methods | ME107822 | | 3 | Mechanical Engineering | Tribology | ME107823 | | 4 | Mechanical Engineering | Mechatronics | ME107824 | | 5 | Mechanical Engineering | Non Conventional Energy Sources | ME107825 | * Table IV : Open Elective - III | Board of Studies (BOS) | Courses (Subject) | Course Code | |-------------------------------|-------------------------------|-------------| | Mechanical Engineering | Theory of Composite Materials | ME100841 | | Mechanical Engineering | Microfluidics | ME100842 | | Mechanical Engineering | Micro and Nano manufacturing | ME100843 | | | | July 2023 | 1.00 | Applicable for AY 2023-24 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | (An Autonomous Institute Affiliated to CSVTU Bhilai) ### SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING # SYLLABUS B.TECH. (MECHANICAL ENGINEERING) EIGHT SEMESTER | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | | Subject Code
ME107801 | Industrial Engineering and
Management | L = 3 | T = 1 | P = 0 | Credits = 4 | |--------------------------|--|-------|-------|-------|--------------| | Evaluation | ESE | CT | TA | Total | ESE Duration | | Scheme | 100 | 20 | 30 | 150 | 3 Hours | | Course Objectives | Course Outcomes | | |---|---|---------------------------------| | The objective of the course to: | Students will be able to: | | | To impart capability of successfully planning, Controlling, and implementing projects. Understand and apply the principles of math, science, technology and engineering, involving Industry-relevant problems. Contribute to the profitable growth of industrial economic sectors by using IE analytical tools, effective computational approaches, and systems Thinking methodologies. Maintain high standards of professional and Ethical responsibility. Practice life-long learning to sustain technical Currency and excellence throughout one's career. | in Industrial engineering. CO2: Ability to design and conductive experiments, as well as to analyze an interpret data. CO3: Ability to identify, formulates, and solvengineering problems. CO4: Ability to use the techniques, skills, an modern engineering tools necessary from industrial engineering practice. CO5: Ability to design, develop, implement and | res
and
for
and
ade | | UNIT 1 | CO | 1 | | Introduction History & development, objective, place of Industrial Plant Layout and Plant Location Objective & Principles, factors affecting layout, ty location, Plant location problems factors affectin evaluation of plant location. UNIT 2 Basic concepts and Functions of management Nature, Purpose and Objectives of basic function | ypes of layouts. Need for a suitable g location, quantitative method for 4Hr | | | Responsibility, Social responsibility of manager, ethics and | management | | | Marketing Management Marketing Environment, Marketing Mix, Advertising Distribution | | rs. | | UNIT 3 | CO | 3 | | Work Study Purpose, objectives and applications of work study, P Method Study Introduction, procedure, flow process charts, Mult principles, Therbligs, cycle graph and chronocycle graph | tiple activity chart, motion economy | rs. | | UNIT 4 | CO | 4 | | | | | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | ### **SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING** | XX7 1 3 # | | |--|--------| | Work Measurement | | | Definition, types, Time Study- selection & timing the job, rating, allowances, Numerical on | | | Normal and standard time calculation. | | | Job Evaluation and Merit Rating | | | Definition, objectives, methods | 4 Hrs. | | UNIT 5 | CO5 | | Wages and Incentives | | | Terminology, characteristics, factors, types of incentives, wage incentive plan, Rowan plan, | | | Taylor's differential piece rate system, Emerson's efficiency plan, Halsey's 50-50 plan, | | | Bedaux plan, Group task & Bonus system. | | | Human Resource Management | | | Nature and Scope of Human Resource Planning, Recruitment and Selection, Training and | | | Development, Career Growth, Grievances, Motivation – needs and types, Maslow | | | hierarchy of needs theory, Herzberg two factor theory | 6 Hrs. | ### **Text Books:** | S.
No. | Title | Author(s) | Publisher | |-----------|--|----------------------------|---------------------| | 1 | Industrial Engineering and Production Management | Martand Telsang | S. Chand. | | 2 | Industrial Engineering & Management | S. Dalele & Mansoor
Ali | Standard Publishers | | | creating books. | | | | | | | |-----------|---|-----------------|---|--|--|--|--| | S.
No. | Title | Author(s) | Publisher | | | | | | 1 | Industrial Engineering & Management,
A new perspective | Philip E Hicks | McGgraw Hill | | | | | | 2 | Introduction of work study | ILO, Geneva | Universal Publishing
Corporation, Bombay | | | | | | 3 | Motion and Time Study | Ralph M. Bannes | John Wiley & Sons | | | | | | 4 | Human Resource Management | Luthans Fred | McGraw Hill, Inc. | | | | | | 5 | Marketing Management | Kotler Philip | Prentice Hall of India | | | | | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | | Subject Code
ME107821 | Energy Audit and Management | L = 2 | T = 1 | P = 0 | Credits = 3 | |--------------------------|-----------------------------|-------|-------|-------|---------------------| | Evaluation | ESE | CT | TA | Total | ESE Duration | | Scheme | 100 | 20 | 30 | 150 | 3 Hours | | Course Objectives | Course Outcomes | | |--|---|--| | The objective of the course to: | Students will be able to: | | | Familiarizing with management especially with management in energy sector engineering. Fundamentals of product strategy management.
Studying methods of energy accounting and energy auditing in energy sector, industry and final consumption. Finding opportunities to increase the rational use of energy. | energy management and management opportunities. CO2: To understand the different method to control peak demand. CO3: To know energy auditing procedur | energy ods used re. ods used energy derstand | | UNIT 1 | | CO1 | | Overview | | | | History of Energy Management: Energy forecasting Renewable energy recourses. Load management. I management (DSM) Energy conservation in realistic forecasting for decentralized load management. UNIT 2 | Energy management. Demand side distribution system. Short term load | 4Hrs
CO2 | | Energy Situation and Global Energy Sources World energy consumption. Energy in developing energy sources. Non-conventional renewable energy so sources. Solar energy types. Wind energy. Wave, tic power system. Wind power generation for large scale g induction generators. | burces. Potential of renewable energy dal and OTEC. Super-conductors in generation of electricity. Wind driven | 5 Hrs. | | UNIT 3 | | CO3 | | Energy Auditing as Applicable to an Industry Classification of energy audit System optimization. Polymaintenance. Process modification. Non-conventional Types of off-peak tariffs. | ower factor improvement. Preventive l energy sources. Electricity tariffs. | 6 Hrs. | | UNIT 4 | | CO4 | | Elements of Energy Auditing and Metering Methodolo utilization. Technology up-gradation. Fine tuning, Enermethods of energy conservation. | gies (Case Studies): Capacity rgy conservation. Concept and | 4 Hrs. | | UNIT 5 | | CO5 | | Demand Side Management Introduction to DSM. Conc DSM.DSM techniques. Time of day pricing, multi-utility | | | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | ### **SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING** | pricing models for planning, load management. Load priority technique. Peak clipping. | | |---|--------| | Peak shifting. Valley filling. Strategic conservation. Energy efficient equipment, | | | Socioeconomic awareness programs. | 6 Hrs. | ### **Text Books:** | S.
No. | Title | Author(s) | Publisher | |-----------|--|----------------------|----------------------------------| | 1. | Energy Demand: Analysis, Management and Conservation | Ashok. V. Desai (ED) | Wiley Eastern Ltd., New
Delhi | | 2. | Energy technology | S. Rao, Parulekar | Khanna Publication | | S.
No. | Title | Author(s) | Publisher | |-----------|---|---------------------------------|--------------------------------| | 1. | Demand Side Management | Jyothi Prakash | Tata McGraw-Hill
Publishers | | 2. | Renewable Energy Sources and
Conservation Technology | N. K. Bansal, Kleeman
Millin | Tata McGraw-Hill
Publishers | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | | Subject Code
ME107822 | Non-Destructive Testing Methods | L = 2 | T = 1 | P = 0 | Credits = 3 | |--------------------------|---------------------------------|-------|-------|-------|--------------| | Evaluation | ESE | CT | TA | Total | ESE Duration | | Scheme | 100 | 20 | 30 | 150 | 3 Hours | | Course Objectives Course Outcomes | | | |---|-----------|--| | The objective of the course to: Students will be able to: | | | | 1. Understand the concept of nondestructive testing. CO1: Identify the requirements of | testing | | | 2. Describe the various types of NDT tests carried criteria as per material composit | | | | out on components. CO2: Understand the theory of non-de | structive | | | 3 Describe ultrasonic method of testing the testing methods is used. | | | | materials. CO3: Determine the type of require non-destructive test. | ment of | | | 4. Analyze the different types of tests carried out on CO4: Distinguish between the various | us NDT | | | components and surfaces. test as Ultrasonic and Eddy | | | | 5. Understand the properties of materials suitable for methods. | | | | NDT test. CO5: Describe the various types | of non- | | | 6. Understand the radiography uses in engineering. destructive test used to determ surface cracks. | nine the | | | UNIT 1 | CO1 | | | Overview of NDT | | | | NDT Versus Mechanical testing, Overview of the Non-Destructive Testing Methods for the | | | | detection of manufacturing defects as well as material characterization. Relative merits and | | | | limitations, various physical characteristics of materials and their applications in NDT, | 477 | | | Visual inspection. | 4Hrs | | | UNIT 2 | CO2 | | | Surface NDE Methods Liquid Penetrant Testing Principles types and preparties of liquid penetrants developers | | | | Liquid Penetrant Testing- Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results. | | | | Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetization | | | | methods, Interpretation and evaluation of test indications, Principles and methods of | | | | demagnetization, Residual magnetism. | 5 Hrs. | | | UNIT 3 | CO3 | | | Thermography and Eddy Current Testing | | | | Principles, Contact and non-contact inspection methods, Techniques for applying liquid | | | | crystals, Advantages and limitation - infrared radiation and infrared detectors, | | | | Instrumentations and methods, applications. Eddy Current Testing-Generation of eddy | | | | currents, Properties of eddy currents, Eddy current sensing elements, Probes, | 6 Hrs. | | | Instrumentation, Types of arrangement, Applications, advantages, Limitations, | | | | Interpretation/Evaluation. | 004 | | | UNIT 4 | CO4 | | | Ultrasonic Testing and Acoustic Emission Ultrasonic Testing Principle Transducers transmission and pulse cake method attraight | | | | Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan. | | | | | | | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | ### **SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING** | Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique IV | | | |--|--------|--| | Principle, AE parameters, Applications. | 4 Hrs. | | | UNIT 5 | CO5 | | | Radiography | | | | Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types | | | | and use of filters and screens, geometric factors, Inverse square, law, characteristics of | | | | films – graininess, density, speed, contrast, characteristic curves, Penetrometers, Exposure | | | | charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed | | | | Radiography, Computed Tomography. | 6 Hrs. | | ### **Text Books:** | S.
No. | Title | Author(s) | Publisher | |-----------|------------------------------------|---|--| | 1. | Practical Non-Destructive Testing | Baldev Raj, T.
Jayakumar, M.
Thavasimuthu | Narosa Publishing House | | 2. | Non-Destructive Testing Techniques | Ravi Prakash | 1 st Revised Edition, New
Age International Publishers | | S.
No. | Title | Author(s) | Publisher | |-----------|---|---------------------|---| | 1. | Non-Destructive Evaluation and Quality Control | ASM Metals Handbook | American Society of Metals,
Metals Park, Ohio, USA | | 2. | Introduction to Non-destructive testing: a training guide | Paul E Mix | Wiley, 2nd Edition New Jersey | | 3. | Handbook of Non-destructive evaluation | Charles, J. Hellier | McGraw Hill, New York | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | (An Autonomous Institute Affiliated to CSVTU Bhilai) ### SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING | Subject Code
ME107823 | Tribology | L = 2 | T = 1 | P = 0 | Credits = 3 | |--------------------------|-----------|-------|-------|-------|--------------| | Evaluation | ESE | CT | TA | Total | ESE Duration | | Scheme | 100 | 20 | 30 | 150 | 3 Hours | **Course Outcomes** **Course Objectives** | Course Objectives | Course outcomes | | |--|--|-------------| | The objective of the course to: | Student will be able to: | | | 1. To provide the knowledge and importance | CO1: Ability to understand the role of we | | | of Tribology in Design, friction, wear and | friction and the need of lubricati | on in | | lubrication aspects of machine components. | Industry and industrial components | | | 2. To introduce the concept of surface | CO2: Ability to identify different type | es of | | engineering and its importance in tribology. | sliding and rolling
friction, Wear | r and | | 3. To understand the behavior of Tribological | related theories | | | components. | CO3: Ability to identify, formulates, | and | | 4. To understand the principles of lubrication, | solve tribological | | | lubrication regimes, theories of | problems. | | | hydrodynamic and theadvanced lubrication | CO4: Ability to distinguish among | | | techniques. | different Lubricant regime. To ad | | | 5. To select proper grade lubricant for specific | the underlying concepts, methods | | | application. | application of Industrial lubrication | | | | CO5: Determine the application of Lubric | | | UNIT 1 | | CO1 | | Introduction | | | | Tribology in design, tribology in industry Viscosit | | | | absolute and kinematic viscosity, temperature v | | | | viscosity, different viscometers, Tribological con | nsiderations Nature of surfaces and their | 411 | | contact. | | 4Hrs | | UNIT 2 | | CO2 | | Friction and wear | | | | Role of friction and laws of static friction, cause | | | | rolling friction; Friction of metals and non-metals; | | | | mechanism of wear, types and measurement of wear | ar, friction affecting wear, Theories of wear; | | | Wear of metals and non-metals. | | <i>5</i> 11 | | LINUTE A | | 5 Hrs. | | UNIT 3 | | CO3 | | Hydrostatic lubrication | | | | Principle of hydrostatic lubrication, General rec | | | | bearing materials, Hydrostatic step bearing, applica | | | | applications, Hydrostatic lifts, hydrostatic squeeze | nims and its application to journal bearing. | 6 Hrs. | | UNIT 4 | | CO4 | | Hydrodynamic theory of lubrication | | 004 | | Principle of hydrodynamic lubrication, Various | heories of lubrication Petroff's equation | | | Friction in sliding bearing, hydro dynamic theory a | | | | The tion in shaing bearing, nyaro aynamic theory a | ppined to journal ocumes, minimum on mini | <u> </u> | | | Applical | ale for | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | ### **SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING** | thickness., oil whip and whirl, anti –friction bearing, hydrodynamic thrust bearing. | 4 Hrs. | |--|--------| | UNIT 5 | CO5 | | Lubrication and lubricants | | | Introduction, dry friction; Boundary lubrication; classic hydrodynamics, hydrostatic and elasto hydrodynamic lubrication, Functions of lubricants, Types of lubricants and their industrial uses; SAE classification, recycling, disposal of oils, properties of liquid and grease lubricants; | | | lubricant additives, general properties and selection. | 5 Hrs. | ### **Text Books:** | S.
No. | Title | Author(s) | Publisher | |-----------|---------------------------|-------------------------|---------------| | 1 | Fundamentals of Tribology | BasuSen Gupta and Ahuja | PHI | | 2 | Tribology in Industry | Sushil Kumar Srivatsava | S.Chand & Co. | | S.
No. | Title | Author(s) | Publisher | | | | |-----------|---|------------------------------------|---------------------------|--|--|--| | 1 | Tribology | H. G. Phakatkar and R. R. Ghorpade | Nirali Publications | | | | | 2 | Tribology | B. C. Majumdar | McGraw Hill Co Ltd. | | | | | 3 | Standard Hand Book of Lubrication Engg. | O'Conner and Royle | McGraw Hills Co Ltd. | | | | | 4 | Introduction to Tribology | J. Halling | Wykeham Publications Ltd. | | | | | 5 | Engineering Tribology | Prasanta Sahoo | PHI | | | | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | | Subject Code
ME107824 | Mechatronics | L = 2 | T = 1 | P = 0 | Credits = 3 | |--------------------------|--------------|-------|-------|-------|--------------| | Evaluation | ESE | CT | TA | Total | ESE Duration | | Scheme | 100 | 20 | 30 | 150 | 3 Hours | | Course Objectives | Course Outcomes | | |---|--|---------------------| | The objective of the course to: | Students will be able to: | | | The main objective of the course is to apply knowledge of mechatronics for understanding and solving engineering problems To acquire knowledge and hands-on competence in applying the concepts of mechatronics in the design and development of mechanical systems. | CO1: Discuss the basics of mechatron their scope. CO2: Describe sensors and transducers. CO3: Describe Hydraulic, Pneuma Electrical actuators. CO4: Demonstrate an understanding acquisition system and control system. CO5: Demonstrate an understanding of mechatronics systems. | tic & of data stem. | | UNIT 1 | | CO1 | | Introduction Origin, Definition, Benefits, Challenges, Commercial Scaling laws. Intermolecular forces, States of matter equations, Constitutive relations. | | 8
Hrs. | | UNIT 2 | | CO2 | | Micro-Scale Fluid Mechanics | | | | Gas and liquid flows, Boundary conditions, Slip theoflows, Entrance effects, Hydraulic resistance and different cross-sections, Channels in series and parallel. | Circuit analysis, Straight channel of | 6 Hrs. | | UNIT 3 | | CO3 | | Electrokinetics Electro hydro dynamics fundamentals, Electro-osmos electroosmotic flow, Ideal EOF with back pressure, Ca | | | | power-law fluids. | | 6 Hrs. | | UNIT 4 | | CO4 | | Microfabrication Techniques Materials, Clean room, Silicon crystallography, Mill mask, spin coating, exposure and development, Etch Wafer bonding, Polymer microfabrication, PMMA/Combossing, fluidic interconnections. | ning, Bulk and Surface micromachining, | 4 Hrs. | | UNIT 5 | | CO5 | | Microfluidics Components Micropumps, Check-valve pumps, Valve-less pum Centrifugal pumps, Ultrasonic pump, EHD pump, MHI Thermopneumatic valves, Thermomechanical valves, Electromagnetic valves, Capillary force valves. | D pumps, Microvalves, Pneumatic valves, | 5 Hrs. | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | ### **SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING** ### **Text Books:** | S.
No. | Title | Author(s) | Publisher | |-----------|--|---------------------------------|-------------------------| | 1 | Fundamentals and applications of Microfluidics | N.T. Nguyen and S. T.
Werely | Artech House | | 2 | Theoretical Microfluidics | H. Bruus | Oxford University Press | | S.
No. | Title | Author(s) | Publisher | | | | | |-----------|---|------------------------------|----------------------------|--|--|--|--| | 1 | Fundamentals of Microfabrication | M. J. Madou | CRC Press | | | | | | 2 | Introduction to microfluidics | P. Tabeling | Oxford University Press | | | | | | 3 | Micro- and Nanoscale Fluid
Mechanics: Transport in Microfluidic
Devices | B. J. Kirby | Cambridge University Press | | | | | | 4 | Microfluidics | S. Colin | John Wiley & Sons | | | | | | 5 | Microfluidics for Biotechnology | J. Berthier and P. Silberzan | Artech House | | | | | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | | Subject Code
ME107825 | Non-Conventional Energy Sources | L = 2 | T = 1 | P = 0 | Credits = 3 | |--------------------------|---------------------------------|-------|-------|-------|--------------| | Evaluation | ESE | CT | TA | Total | ESE Duration | | Scheme | 100 | 20 | 30 | 150 | 3 Hours | | Course Objectives | Course Outcomes | |---|---| | The objective of the course to: | Students will be able to: | | 1. Discuss non-conventional sources of energy and explain the working of different solar energy applications. | | | 2. Explain the working principle of solar energy and working of solar energy conversion systems | | | of different gasifiers | CO3: Ability to describe various biogas generation methods, discuss various factors affecting the | | 4. Discuss wind energy conversion systems and explain sources of geothermal energy. | and summarize the advantages and limitations | | 5. Describe the working principle of different fuel cells & OTEC. | of biomass gasifiers. CO4:
Ability to discuss different wind energy conversion technologies, explain the working of different geothermal energy resources, describe the applications of geothermal energy. | | | CO5: Ability to describe the working principle of different fuel cells, explain the working of open cycle and closed cycle OTEC systems, explain the working of single and double | | UNIT 1 | basin tidal power systems. | | Introduction | COI | | Energy source, India's production and reserves nonconventional energy sources, energy alterna power, wind biomass, ocean temperature different and oil shale, nuclear (Brief descriptions); ad (Qualitative and Quantitative). Solar Radiation: Extra-Terrestrial radiation, radiation, solar constant, solar radiation at the | tives, solar, thermal, photovoltaic. Water ace, tidal and waves, geothermal, tar sands wantages and disadvantages, comparison spectral distribution of extra-terrestrial | | radiation, solar radiation data | 4 Hrs. | | UNIT 2 Solar energy storage system, Application of solar and cooling, solar photovoltaic, solar cooking industrial process heating, Solar power genera mechanical power, solar refrigeration & air condi | energy: solar water heating, space heating solar distillation & desalination, Solar tion. Solar Green Houses, Solar thermo | | | 5 Hrs. | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | ### **SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING** | UNIT 3 | CO3 | |--|--------| | Energy from Biomass: Type of biomass sources, Energy plantation, Methods for | | | obtaining energy from biomass, | | | Biomass conversion technologies-wet and dry processes, Biodigestion, | | | Community/Industrial biogas plants, Factors affecting biodigestion, Design of a biogas | | | plant, Classification, advantages and disadvantages of biogas plants, Problems related to | | | biogas plants, Utilization of biogas. | | | Thermal gasification of biomass, Gasifier- classification, chemistry, advantages, | | | disadvantages and application. Alcohol fuels from biomass: overview, feedstock, methods | | | for alcohol production, Ethanol as an alternative liquid fuel; engine performance with | | | alcohol fuels, biodiesel from biomass. | 6 Hrs. | | UNIT 4 | CO4 | | Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and | | | power from wind; major problems associated with wind power, wind machines; Types of | | | wind machines and their characteristics, horizontal and vertical axis wind mills, elementary | | | design principles; coefficient of performance of a wind mill rotor, aerodynamic | | | considerations of wind mill design, numerical examples. | | | Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental | | | characteristics of tidal power, harnessing tidal energy, limitations. | | | Geothermal Energy Conversion: Principle of working, types of geothermal station with | | | schematic diagram, geothermal plants in the world, problems associated with geothermal | | | conversion, scope of geothermal energy. | 4 Hrs. | | UNIT 5 | CO5 | | Chemical Energy sources: Fuel cells -principle of operation of fuel cell, types of fuel cells | | | -hydrogen- oxygen, solid-oxide, alkaline, polymer electrolyte membrane fuel cells, | | | advantages, disadvantages and conversion efficiency of fuel cells, applications of fuel cells. | | | Energy from the oceans: Ocean thermal energy conversion-open cycle and closed cycle | | | systems, energy from tides – basic principle of tidal power, components of tidal power | | | plants, single basin and double basin systems, ocean waves – wave energy conversion | | | systems. | 5 Hrs. | ### **Text Books:** | S.
No. | Title | Author(s) | Publisher | |-----------|--|--------------|---| | 1 | Non-Conventional Energy Sources | G D Rai | Khanna Publishers. Delhi, 2010 | | 2 | Solar Energy-Principles of Thermal
Collection & Storage | S P Sukhatme | Tata McGraw Hill Publishing Company Ltd., New Delhi | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | ### **SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING** | S.
No. | Title | Author(s) | Publisher | |-----------|--|--------------------------------------|--------------------------------| | 1 | Solar Energy Thermal processes | John A Duffie & William
A Beckman | Wiley Interscience publication | | 2 | Solar Energy - Fundamentals and Applications | P Garg & J Prakash | Wiley Interscience publication | | 3 | Biomass to Renewable Energy
Processes | Jay Cheng, | CRC press, 2009 | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | | Subject Code
ME100841 | Theory of Composite Materials | L = 3 | T = 0 | P = 0 | Credits = 3 | |--------------------------|-------------------------------|-------|-------|-------|--------------| | Evaluation | ESE | CT | TA | Total | ESE Duration | | Scheme | 100 | 20 | 30 | 150 | 3 Hours | | Course Objectives Course Outcomes | | |---|------------------------------------| | The objective of the course to: Students will be able to: | | | 1. To be familiar with classification & CO1: Understand the basics of characteristics of composite material and their materials and their related str | - | | application. To gain the knowledge about manufacturing methods, testing and environmental issue related with composite material. To train students to be able to design composite structures, select composite materials, conduct | elated with composite | | stress analyses of selected practical applications using laminated plate theories appropriate strength criteria. temperature and failure CO4: Understand the laws related materials and effects of environment on composite be CO5: Understand the Static, dy stability analysis of composite | stress and
haviour
namic and | | UNIT 1 | CO1 | | Introduction to Composites Definition, classification/ types and characteristics of composite materials; Basic composite constituents – fiber and matrix; Properties of unidirectional long fiber and short fiber composites; Polymeric materials and polymeric composites; Honeycomb and Sandwich Composite Structure; Application areas of composites UNIT 2 Manufacturing, Testing and Environmental Issues Moulding, pultrusion, filament winding, other advanced manufacturing techniques; Quality | 8 Hrs.
CO2 | | inspection and testing – uniaxial tension test, uniaxial compression test, shear test, fracture toughness testing of composites. Environmental Issues related with composite manufacturing and their applications. | 8 Hrs. | | UNIT 3 Material Properties Orthotropic and Anisotropic materials; properties relating stress to strain, properties relating temperature to strain, properties relating moisture to strain, properties relating stress (or strain) to failure, Failure Criterion – Maximum Stress and Maximum Strain; | CO3 | | Review of force tensors, stress tensors, strain tensors UNIT 4 Composite Laminates | 7 Hrs. | | Thin-plate theory, classical lamination theory; Angle-ply and cross ply laminates; Static, dynamic and stability analysis for simple cases of composite plates; Inter-laminar stress behavior; Composite Joints; Design with Composites. | 6 Hrs. | | composite volue, zeagn mai composites. | | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | ### **SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING** | UNIT 5 | CO5 | |--|--------| | Elastic Response Analysis | | | Hooke's law for orthotropic and anisotropic materials; Linear Elasticity for Anisotropic | | | Materials; Unidirectional composite laminates; Rotations of Stresses, Strains; Residual | | | Stresses; Stress and environmental effects on composites behavior. | 6 Hrs. | ### **Text Books:** | S.
No. | Title | Author(s) | Publisher | |-----------|--|--|----------------------------------| | 1 | Mechanics of Composite Materials and Structures | M. Mukhopadhyay | Universities Press, India | | 2 | Analysis and Performance of Fiber
Composites | B. D. Agarwal, L. J.
Broutman and K.
Chandrashekhara | John Wiley and Sons, New
York | | 3 | Fiber Reinforced Composites: Materials, Manufacturing and Design | P. K. Mallick | Taylor & Francis | | S.
No. | Title | Author(s) | Publisher | |-----------|--|----------------------------------|-------------------------| | 1 |
Primer on Composite Materials
Analysis | J. C. Halpin | CRC Press | | 2 | Composite Materials Technology:
Processes and Properties | P. K. Mallick and S.
Newman | Hanser Publishers | | 3 | Stress Analysis of Fiber – Reinforced
Composite Materials | M. W. Hyer | McGraw-Hill, Australia | | 4 | Engineering Mechanics of Composite Materials | Issac M. Daniel and Ori
Ishai | Oxford University Press | | | | July 2022 | 1.00 | Applicable for
AY 2022-23 | |---------------|----------------|-----------------|---------|------------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | | Subject Code
ME100842 | Microfluidics | L = 2 | T = 1 | P = 0 | Credits = 3 | |--------------------------|---------------|-------|-------|-------|--------------| | Evaluation | ESE | CT | TA | Total | ESE Duration | | Scheme | 100 | 20 | 30 | 150 | 3 Hours | | Course Objectives | Course Outcomes | |---|--| | The objective of the course to: | Students will be able to: | | Understanding some laws and forces relevant to microfluidics. Understanding some advanced fluid mechanics relevant to micro scale device. Demonstrate a basic understanding of principle and processes of electro kinetics. Understanding microfabrication techniques and related materials. | CO1: Describe the basic laws and forces related to microfluidics. CO2: Describe the mechanism involved in advanced fluid mechanics. CO3: Describe the fundamentals of electro kinetics and analyze the flow related problems. CO4: Describe the various materials and | | 5. Make reasonable decisions about the microfluidic components, selection, options and performance. | techniques involved in microfabrication. CO5: Describe the performance of microfluidics components like micropumps and microvalves. | | UNIT 1 | CO1 | | Introduction | | | Origin, Definition, Benefits, Challenges, Commercial | | | Scaling laws. Intermolecular forces, States of matter | | | equations, Constitutive relations. | 8 Hrs. | | UNIT 2 | CO2 | | Micro-Scale Fluid Mechanics Gas and liquid flows, Boundary conditions, Slip theo | ry Transition to turbulence Low Re | | flows, Entrance effects, Hydraulic resistance and C | | | different cross-sections, Channels in series and parallel | | | UNIT 3 | CO3 | | Electrokinetics | | | Electro hydro dynamics fundamentals, Electro-osmos electroosmotic flow, Ideal EOF with back pressure, C | ascade electroosmotic micropump, EOF | | of power-law fluids. UNIT 4 | 6 Hrs. | | Microfabrication Techniques | CO4 | | Materials, Clean room, Silicon crystallography, Mille | er indices Oxidation photolithography | | mask, spin coating, exposure and development, Etch | | | Wafer bonding, Polymer microfabrication, PMMA/CO | | | embossing, fluidic interconnections. | 4 Hrs. | | UNIT 5 | CO5 | | Microfluidics Components | | | Micropumps, Check-valve pumps, Valve-less pum | | | Centrifugal pumps, Ultrasonic pump, EHD pump, | | | | | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | (An Autonomous Institute Affiliated to CSVTU Bhilai) ### SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING valves, Thermopneumatic valves, Thermomechanical valves, Piezoelectric valves, Electrostatic valves, Electromagnetic valves, Capillary force valves. 5 Hrs. #### **Text Books:** | S.
No. | Title | Author(s) | Publisher | |-----------|--|---------------------------------|-------------------------| | 1 | Fundamentals and applications of Microfluidics | N.T. Nguyen and S. T.
Werely | Artech House | | 2 | Theoretical Microfluidics | H. Bruus | Oxford University Press | | S.
No. | Title | Author(s) | Publisher | |-----------|---|------------------------------|----------------------------| | 1 | Fundamentals of Microfabrication | M. J. Madou | CRC Press | | 2 | Introduction to microfluidics | P. Tabeling | Oxford University Press | | 3 | Micro- and Nanoscale Fluid
Mechanics: Transport in Microfluidic
Devices | B. J. Kirby | Cambridge University Press | | 4 | Microfluidics | S. Colin | John Wiley & Sons | | 5 | Microfluidics for Biotechnology | J. Berthier and P. Silberzan | Artech House | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | | Subject Code
ME100843 | Micro and Nano Manufacturing | L = 3 | T = 0 | P = 0 | Credits = 3 | |--------------------------|------------------------------|-------|-------|-------|--------------| | Evaluation | ESE | CT | TA | Total | ESE Duration | | Scheme | 100 | 20 | 30 | 150 | 3 Hours | | Course Objectives | Course Outcomes | | | |--|---|--|--| | The objective of the course to: | Students will be able to: | | | | The objective of the course to: To give awareness of different techniques used in micro and nano manufacturing To give in-depth idea of the conventional techniques used in micro manufacturing To introduce Non-conventional micro-nano manufacturing and finishing approaches To introduce Micro and Nanofabrication Techniques and other processing routes in Micro and nano manufacturing To know different techniques used in Micro Joining and the metrology tools in micro and nano manufacturing. | CO1: To understand the different techniques used in micro and nano manufacturing CO2: To understand in-depth idea of the conventional techniques used in micro manufacturing. CO3: To understand about non-conventional micro-nano manufacturing and finishing approaches. CO4: To understand on micro and nano finishing processes. CO5: To understand and know about different techniques used in micro joining and the metrology tools in micro and nano | | | | UNIT 1 | manufacturing. | | | | Introduction to Precision engineering, macro milling and micro drilling, Micro-electromechanical systems — merits and applications, Micro phenomenon in Electro-photography — applications, Bulk micromachining, Surface micromachining- steps, Micro instrumentation — applications, Micro Mechatronics, Nano finishing — finishing operations, Laser technology in micro manufacturing- Practical Lasers, application of technology fundamentals, Micro-energy and chemical system (MECS), Space Micro-propulsion, e-Beam Nanolithography — important techniques, Introduction to Nanotechnology, Carbon Nano-tubes — properties and structures, Molecular Logic Gates and Nano level Biosensors — applications. | | | | | UNIT 2 Introduction to mechanical micromachining, Mic applications, Micro turning- process, tools and applications, Micro milling and Mapplications, Micro extrusion- process and application Plastic forming and Roller Imprinting. | ications, Diamond Micro turning – Micro grinding – process, tools and as, Micro bending with Laser, Nano- 7 Hrs | | | | UNIT 3 Introduction to Non-conventional micro-nano man applications – Abrasive Jet Micro Machining, WAJ Micro EBM – Process principle, description and applications, For applications. | MM, Micro EDM, Micro WEDM, ications, Micro ECM, Micro LBM - | | | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | ### **SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING** | UNIT 4 | CO4 | |---|--------| | Introduction to Micro and Nano Finishing Processes, Magnetorheological Finishing (MRF), | | | Processes, Magnetorheological abrasive flow finishing processes (MRAFF) – process | | | principle and
applications, Force analysis of MRAFF process, Magnetorheological Jet | | | finishing processes, Working principle and polishing performance of MR Jet Machine, | | | Elastic Emission Machining (EEM) – machine description, applications, Ion Beam | | | Machining (IBM) – principle, mechanism of material removal, applications, Chemical | | | Mechanical Polishing (CMP) – Schematic diagram, principle and applications. | 7 Hrs. | | UNIT 5 | CO5 | | Laser Micro welding - description and applications, Defects, Electron Beam Micro- | | | welding - description and applications, Introduction to micro and nano measurement, | | | defining the scale, uncertainty, Scanning Electron Microscopy – description, principle, | | | Scanning White-light Interferometry – Principle and application, Optical Microscopy – | | | description, application, Scanning Probe Microscopy, scanning tunneling microscopy- | | | description, application, Confocal Microscopy - description, application, Introduction to | | | On-Machine Metro | 6 Hrs | #### **Text Books:** | S.
No. | Title | Author(s) | Publisher | |-----------|--|-------------------|-------------------| | 1 | Micro and Nano-manufacturing | Mark. J. Jackson, | Springer New York | | 2 | Micro-fabrication and Nano-
manufacturing - Pulsed water drop
micromachining | Mark. J. Jackson, | CRC Press | | S.
No. | Title | Author(s) | Publisher | |-----------|---|--------------------------------|-----------------------------| | 1 | Micro-manufacturing and
Nanotechnology | Nitaigour Premchand
Mahalik | Springer Berlin, Heidelberg | | 2 | Micro-manufacturing Processes | V.K.Jain Wendt, J. | CRC Press | | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | (An Autonomous Institute Affiliated to CSVTU Bhilai) ### SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING | Subject Code
ME107891 | Industrial Engineering and
Management Lab | L = 0 | T = 0 | P = 2 | Credits = 1 | |--------------------------|--|-------|-------|-------|--------------| | Evaluation | ESE | CT | TA | Total | ESE Duration | | Scheme | 25 | - | 25 | 50 | 3 Hours | | | Course Objectives | Course Outcomes | |-----|---|--| | The | objective of the course to: | Students will be able to: | | 1. | To impart capability of successfully planning, | CO1: Ability to apply mathematics and science | | | Controlling, and implementing projects. | in Industrial engineering. | | 2. | Understand and apply the principles of maths, | CO2: Ability to design and conduct | | | science, technology and engineering, involving | experiments, as well as to analyze and | | | industry-relevant problems. | interpret data. | | 4. | Contribute to the profitable growth of industrial | CO3: Ability to identify, formulates, and solves | | | economic sectors by using IE analytical tools, | engineering problems. | | | effective computational approaches, and systems | CO4: Ability to use the techniques, skills, and | | | thinking methodologies. | modern engineering tools necessary for | | 5. | Maintain high standards of professional and | industrial engineering practice. | | | Ethical responsibility. | CO5: Ability to design, develop, implement and | | 6. | Practice life-long learning to sustain technical | improve integrated systems that include | | | Currency and excellence throughout ones career. | people, materials, information, | | | | equipment, and people. | ### EXPERIMENTS TO BE PERFORMED (MINIMUM TEN EXPERIMENTS) - 1. To prepare the charts & diagrams for a selected problem according to the existing method and an improved method -men type flow process chart. - 2. To prepare the charts & diagrams for a selected problem according to the existing method and an improved method -material type flow process chart - 3. To prepare the charts & diagrams for a selected problem according to the existing method and an improved method -machine type flow process chart - 4. To prepare the charts & diagrams for a selected problem according to the existing method and an improved method multiple activity charts. - 5. Study of principles of fundamentals of hand motion. - 6. Study & applications of principles of motion economy. - 7. Performance of micro motion study of a job. - 8. Problems in assignment of men & machines. - 9. Training for a performance rating using walking exercises / audio visual aids. - 10. Calculation of allowance for a job. - 11. Standard time calculation problems. - 12. Problems of wage incentive. - 13. Stop watch time study of a job. | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards | (An Autonomous Institute Affiliated to CSVTU Bhilai) ### SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING | Subject Code
ME107892 | Advance Manufacturing Lab | L = 0 | T = 0 | P = 2 | Credits = 1 | |--------------------------|---------------------------|-------|-------|-------|--------------| | Evaluation | ESE | CT | TA | Total | ESE Duration | | Scheme | 25 | - | 25 | 50 | 3 Hours | | | Course Objectives | Course Outcomes | |-------|--|---| | The o | objective of the course to: | Students will be able to: | | 1. | To familiarize the students with advanced | CO1: To impart the knowledge of basic | | | machine tools. | methodology of metal cutting. | | 2. | To familiarize the students with extrusion based | CO2: Program a CNC turning or milling | | | additive manufacturing | machine for preparing a job. | | 3. | To acquaint the students with traditional and | CO3: Evaluate the process parameters involved | | | nontraditional machining process | in CNC machining. | | 4. | To introduce the manufacture of polymer | CO4: Analyze the principles of Robot | | | composites. | programming and carryout hands-on | | 5. | To introduce the concepts of thin film-based | practice. | | | deposition process. | CO5: Elaborate any nonconventional machining | | | | process and 3D printing. | ### EXPERIMENTS TO BE PERFORMED (MINIMUM TEN EXPERIMENTS) - 1. Face milling operation using CNC simulator. - 2. Drilling operation using CNC simulator. - 3. Turning operation using CNC simulator. - 4. Boring operation using CNC simulator. - 5. Slotting operation using CNC simulator. - 6. Making a pocket using CNC simulator. - 7. Making a spigot using CNC simulator. - 8. Pick & place operation by robotic arm. - 9. Electrical discharge machining process using EDM simulator. - 10. Extrusion based additive manufacturing. - 11. Micro machining of 3D parts using mechanical micro machining system. | | | July 2022 | 1.00 | Applicable for AY 2022-23 | |---------------|----------------|-----------------|---------|---------------------------| | Chairman (AC) | Chairman (BoS) | Date of release | Version | Onwards |