

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SCHEME OF TEACHING AND EXAMINATION B. Tech. Eight Semester- MECHANICAL ENGINEERING

Effective from 2023-2024 Batch

Effective from 2025-2024 Batch												
Sl. No.	Board of Studies (BOS)	Courses	Category	Course Code		iod j Veek		Exa	heme minat eory/L CT	ion	Total Marks	Credit
1	Mechanical Engineering	Industrial Engineering and Management	PEC	ME107801	3	1	1	100	20	30	150	4
4	Mechanical Engineering	Professional Elective IV *	HSMC	table IV	2	1	1	100	20	30	150	3
5	Mechanical Engineering	Open Elective III **	HSMC	table V	3	-	-	100	20	30	150	3
6	Mechanical Engineering	Industrial Engineering and Management Lab	PEC	ME107891	-	-	2	25	-	25	50	1
7	Mechanical Engineering	Micro and Nano Manufacturing Lab	PCC	ME107892	-	-	2	25	-	25	50	1
8	Mechanical Engineering	Capstone Project Phase II	PSI	ME107893	-	-	16	300	-	150	450	8
		Total			8	2	20	650	60	290	1000	20

L : Lecture,

T: Tutorial,

P : Practical,

ESE: End Semester Exam

CT: Class test TA: Teacher's assessment

* Table IV : Professional Elective - IV

Sl. No.	Board of Studies (BOS)	Courses (Subject)	Course Code
1	Mechanical Engineering	Energy Audit and Management	ME107821
2	Mechanical Engineering	Non Destructive Testing Methods	ME107822
3	Mechanical Engineering	Tribology	ME107823
4	Mechanical Engineering	Mechatronics	ME107824
5	Mechanical Engineering	Non Conventional Energy Sources	ME107825

* Table IV : Open Elective - III

Board of Studies (BOS)	Courses (Subject)	Course Code
Mechanical Engineering	Theory of Composite Materials	ME100841
Mechanical Engineering	Microfluidics	ME100842
Mechanical Engineering	Micro and Nano manufacturing	ME100843

		July 2023	1.00	Applicable for AY 2023-24
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

SYLLABUS B.TECH. (MECHANICAL ENGINEERING) EIGHT SEMESTER

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

Subject Code ME107801	Industrial Engineering and Management	L = 3	T = 1	P = 0	Credits = 4
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes	
The objective of the course to:	Students will be able to:	
 To impart capability of successfully planning, Controlling, and implementing projects. Understand and apply the principles of math, science, technology and engineering, involving Industry-relevant problems. Contribute to the profitable growth of industrial economic sectors by using IE analytical tools, effective computational approaches, and systems Thinking methodologies. Maintain high standards of professional and Ethical responsibility. Practice life-long learning to sustain technical Currency and excellence throughout one's career. 	in Industrial engineering. CO2: Ability to design and conductive experiments, as well as to analyze an interpret data. CO3: Ability to identify, formulates, and solvengineering problems. CO4: Ability to use the techniques, skills, an modern engineering tools necessary from industrial engineering practice. CO5: Ability to design, develop, implement and	res and for and ade
UNIT 1	CO	1
Introduction History & development, objective, place of Industrial Plant Layout and Plant Location Objective & Principles, factors affecting layout, ty location, Plant location problems factors affectin evaluation of plant location. UNIT 2 Basic concepts and Functions of management Nature, Purpose and Objectives of basic function	ypes of layouts. Need for a suitable g location, quantitative method for 4Hr	
Responsibility, Social responsibility of manager, ethics and	management	
Marketing Management Marketing Environment, Marketing Mix, Advertising Distribution		rs.
UNIT 3	CO	3
Work Study Purpose, objectives and applications of work study, P Method Study Introduction, procedure, flow process charts, Mult principles, Therbligs, cycle graph and chronocycle graph	tiple activity chart, motion economy	rs.
UNIT 4	CO	4

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

XX7 1 3 #	
Work Measurement	
Definition, types, Time Study- selection & timing the job, rating, allowances, Numerical on	
Normal and standard time calculation.	
Job Evaluation and Merit Rating	
Definition, objectives, methods	4 Hrs.
UNIT 5	CO5
Wages and Incentives	
Terminology, characteristics, factors, types of incentives, wage incentive plan, Rowan plan,	
Taylor's differential piece rate system, Emerson's efficiency plan, Halsey's 50-50 plan,	
Bedaux plan, Group task & Bonus system.	
Human Resource Management	
Nature and Scope of Human Resource Planning, Recruitment and Selection, Training and	
Development, Career Growth, Grievances, Motivation – needs and types, Maslow	
hierarchy of needs theory, Herzberg two factor theory	6 Hrs.

Text Books:

S. No.	Title	Author(s)	Publisher
1	Industrial Engineering and Production Management	Martand Telsang	S. Chand.
2	Industrial Engineering & Management	S. Dalele & Mansoor Ali	Standard Publishers

	creating books.						
S. No.	Title	Author(s)	Publisher				
1	Industrial Engineering & Management, A new perspective	Philip E Hicks	McGgraw Hill				
2	Introduction of work study	ILO, Geneva	Universal Publishing Corporation, Bombay				
3	Motion and Time Study	Ralph M. Bannes	John Wiley & Sons				
4	Human Resource Management	Luthans Fred	McGraw Hill, Inc.				
5	Marketing Management	Kotler Philip	Prentice Hall of India				

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

Subject Code ME107821	Energy Audit and Management	L = 2	T = 1	P = 0	Credits = 3
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes	
The objective of the course to:	Students will be able to:	
 Familiarizing with management especially with management in energy sector engineering. Fundamentals of product strategy management. Studying methods of energy accounting and energy auditing in energy sector, industry and final consumption. Finding opportunities to increase the rational use of energy. 	energy management and management opportunities. CO2: To understand the different method to control peak demand. CO3: To know energy auditing procedur	energy ods used re. ods used energy derstand
UNIT 1		CO1
Overview		
History of Energy Management: Energy forecasting Renewable energy recourses. Load management. I management (DSM) Energy conservation in realistic forecasting for decentralized load management. UNIT 2	Energy management. Demand side distribution system. Short term load	4Hrs CO2
Energy Situation and Global Energy Sources World energy consumption. Energy in developing energy sources. Non-conventional renewable energy so sources. Solar energy types. Wind energy. Wave, tic power system. Wind power generation for large scale g induction generators.	burces. Potential of renewable energy dal and OTEC. Super-conductors in generation of electricity. Wind driven	5 Hrs.
UNIT 3		CO3
Energy Auditing as Applicable to an Industry Classification of energy audit System optimization. Polymaintenance. Process modification. Non-conventional Types of off-peak tariffs.	ower factor improvement. Preventive l energy sources. Electricity tariffs.	6 Hrs.
UNIT 4		CO4
Elements of Energy Auditing and Metering Methodolo utilization. Technology up-gradation. Fine tuning, Enermethods of energy conservation.	gies (Case Studies): Capacity rgy conservation. Concept and	4 Hrs.
UNIT 5		CO5
Demand Side Management Introduction to DSM. Conc DSM.DSM techniques. Time of day pricing, multi-utility		

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

pricing models for planning, load management. Load priority technique. Peak clipping.	
Peak shifting. Valley filling. Strategic conservation. Energy efficient equipment,	
Socioeconomic awareness programs.	6 Hrs.

Text Books:

S. No.	Title	Author(s)	Publisher
1.	Energy Demand: Analysis, Management and Conservation	Ashok. V. Desai (ED)	Wiley Eastern Ltd., New Delhi
2.	Energy technology	S. Rao, Parulekar	Khanna Publication

S. No.	Title	Author(s)	Publisher
1.	Demand Side Management	Jyothi Prakash	Tata McGraw-Hill Publishers
2.	Renewable Energy Sources and Conservation Technology	N. K. Bansal, Kleeman Millin	Tata McGraw-Hill Publishers

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

Subject Code ME107822	Non-Destructive Testing Methods	L = 2	T = 1	P = 0	Credits = 3
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives Course Outcomes		
The objective of the course to: Students will be able to:		
1. Understand the concept of nondestructive testing. CO1: Identify the requirements of	testing	
2. Describe the various types of NDT tests carried criteria as per material composit		
out on components. CO2: Understand the theory of non-de	structive	
3 Describe ultrasonic method of testing the testing methods is used.		
materials. CO3: Determine the type of require non-destructive test.	ment of	
4. Analyze the different types of tests carried out on CO4: Distinguish between the various	us NDT	
components and surfaces. test as Ultrasonic and Eddy		
5. Understand the properties of materials suitable for methods.		
NDT test. CO5: Describe the various types	of non-	
6. Understand the radiography uses in engineering. destructive test used to determ surface cracks.	nine the	
UNIT 1	CO1	
Overview of NDT		
NDT Versus Mechanical testing, Overview of the Non-Destructive Testing Methods for the		
detection of manufacturing defects as well as material characterization. Relative merits and		
limitations, various physical characteristics of materials and their applications in NDT,	477	
Visual inspection.	4Hrs	
UNIT 2	CO2	
Surface NDE Methods Liquid Penetrant Testing Principles types and preparties of liquid penetrants developers		
Liquid Penetrant Testing- Principles, types and properties of liquid penetrants, developers, advantages and limitations of various methods, Testing Procedure, Interpretation of results.		
Magnetic Particle Testing- Theory of magnetism, inspection materials Magnetization		
methods, Interpretation and evaluation of test indications, Principles and methods of		
demagnetization, Residual magnetism.	5 Hrs.	
UNIT 3	CO3	
Thermography and Eddy Current Testing		
Principles, Contact and non-contact inspection methods, Techniques for applying liquid		
crystals, Advantages and limitation - infrared radiation and infrared detectors,		
Instrumentations and methods, applications. Eddy Current Testing-Generation of eddy		
currents, Properties of eddy currents, Eddy current sensing elements, Probes,	6 Hrs.	
Instrumentation, Types of arrangement, Applications, advantages, Limitations,		
Interpretation/Evaluation.	004	
UNIT 4	CO4	
Ultrasonic Testing and Acoustic Emission Ultrasonic Testing Principle Transducers transmission and pulse cake method attraight		
Ultrasonic Testing-Principle, Transducers, transmission and pulse-echo method, straight beam and angle beam, instrumentation, data representation, A/Scan, B-scan, C-scan.		

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

Phased Array Ultrasound, Time of Flight Diffraction. Acoustic Emission Technique IV		
Principle, AE parameters, Applications.	4 Hrs.	
UNIT 5	CO5	
Radiography		
Principle, interaction of X-Ray with matter, imaging, film and film less techniques, types		
and use of filters and screens, geometric factors, Inverse square, law, characteristics of		
films – graininess, density, speed, contrast, characteristic curves, Penetrometers, Exposure		
charts, Radiographic equivalence. Fluoroscopy- Xero-Radiography, Computed		
Radiography, Computed Tomography.	6 Hrs.	

Text Books:

S. No.	Title	Author(s)	Publisher
1.	Practical Non-Destructive Testing	Baldev Raj, T. Jayakumar, M. Thavasimuthu	Narosa Publishing House
2.	Non-Destructive Testing Techniques	Ravi Prakash	1 st Revised Edition, New Age International Publishers

S. No.	Title	Author(s)	Publisher
1.	Non-Destructive Evaluation and Quality Control	ASM Metals Handbook	American Society of Metals, Metals Park, Ohio, USA
2.	Introduction to Non-destructive testing: a training guide	Paul E Mix	Wiley, 2nd Edition New Jersey
3.	Handbook of Non-destructive evaluation	Charles, J. Hellier	McGraw Hill, New York

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

Subject Code ME107823	Tribology	L = 2	T = 1	P = 0	Credits = 3
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Outcomes

Course Objectives

Course Objectives	Course outcomes	
The objective of the course to:	Student will be able to:	
1. To provide the knowledge and importance	CO1: Ability to understand the role of we	
of Tribology in Design, friction, wear and	friction and the need of lubricati	on in
lubrication aspects of machine components.	Industry and industrial components	
2. To introduce the concept of surface	CO2: Ability to identify different type	es of
engineering and its importance in tribology.	sliding and rolling friction, Wear	r and
3. To understand the behavior of Tribological	related theories	
components.	CO3: Ability to identify, formulates,	and
4. To understand the principles of lubrication,	solve tribological	
lubrication regimes, theories of	problems.	
hydrodynamic and theadvanced lubrication	CO4: Ability to distinguish among	
techniques.	different Lubricant regime. To ad	
5. To select proper grade lubricant for specific	the underlying concepts, methods	
application.	application of Industrial lubrication	
	CO5: Determine the application of Lubric	
UNIT 1		CO1
Introduction		
Tribology in design, tribology in industry Viscosit		
absolute and kinematic viscosity, temperature v		
viscosity, different viscometers, Tribological con	nsiderations Nature of surfaces and their	411
contact.		4Hrs
UNIT 2		CO2
Friction and wear		
Role of friction and laws of static friction, cause		
rolling friction; Friction of metals and non-metals;		
mechanism of wear, types and measurement of wear	ar, friction affecting wear, Theories of wear;	
Wear of metals and non-metals.		<i>5</i> 11
LINUTE A		5 Hrs.
UNIT 3		CO3
Hydrostatic lubrication		
Principle of hydrostatic lubrication, General rec		
bearing materials, Hydrostatic step bearing, applica		
applications, Hydrostatic lifts, hydrostatic squeeze	nims and its application to journal bearing.	6 Hrs.
UNIT 4		CO4
Hydrodynamic theory of lubrication		004
Principle of hydrodynamic lubrication, Various	heories of lubrication Petroff's equation	
Friction in sliding bearing, hydro dynamic theory a		
The tion in shaing bearing, nyaro aynamic theory a	ppined to journal ocumes, minimum on mini	<u> </u>
	Applical	ale for

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

thickness., oil whip and whirl, anti –friction bearing, hydrodynamic thrust bearing.	4 Hrs.
UNIT 5	CO5
Lubrication and lubricants	
Introduction, dry friction; Boundary lubrication; classic hydrodynamics, hydrostatic and elasto hydrodynamic lubrication, Functions of lubricants, Types of lubricants and their industrial uses; SAE classification, recycling, disposal of oils, properties of liquid and grease lubricants;	
lubricant additives, general properties and selection.	5 Hrs.

Text Books:

S. No.	Title	Author(s)	Publisher
1	Fundamentals of Tribology	BasuSen Gupta and Ahuja	PHI
2	Tribology in Industry	Sushil Kumar Srivatsava	S.Chand & Co.

S. No.	Title	Author(s)	Publisher			
1	Tribology	H. G. Phakatkar and R. R. Ghorpade	Nirali Publications			
2	Tribology	B. C. Majumdar	McGraw Hill Co Ltd.			
3	Standard Hand Book of Lubrication Engg.	O'Conner and Royle	McGraw Hills Co Ltd.			
4	Introduction to Tribology	J. Halling	Wykeham Publications Ltd.			
5	Engineering Tribology	Prasanta Sahoo	PHI			

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

Subject Code ME107824	Mechatronics	L = 2	T = 1	P = 0	Credits = 3
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes	
The objective of the course to:	Students will be able to:	
 The main objective of the course is to apply knowledge of mechatronics for understanding and solving engineering problems To acquire knowledge and hands-on competence in applying the concepts of mechatronics in the design and development of mechanical systems. 	 CO1: Discuss the basics of mechatron their scope. CO2: Describe sensors and transducers. CO3: Describe Hydraulic, Pneuma Electrical actuators. CO4: Demonstrate an understanding acquisition system and control system. CO5: Demonstrate an understanding of mechatronics systems. 	tic & of data stem.
UNIT 1		CO1
Introduction Origin, Definition, Benefits, Challenges, Commercial Scaling laws. Intermolecular forces, States of matter equations, Constitutive relations.		8 Hrs.
UNIT 2		CO2
Micro-Scale Fluid Mechanics		
Gas and liquid flows, Boundary conditions, Slip theoflows, Entrance effects, Hydraulic resistance and different cross-sections, Channels in series and parallel.	Circuit analysis, Straight channel of	6 Hrs.
UNIT 3		CO3
Electrokinetics Electro hydro dynamics fundamentals, Electro-osmos electroosmotic flow, Ideal EOF with back pressure, Ca		
power-law fluids.		6 Hrs.
UNIT 4		CO4
Microfabrication Techniques Materials, Clean room, Silicon crystallography, Mill mask, spin coating, exposure and development, Etch Wafer bonding, Polymer microfabrication, PMMA/Combossing, fluidic interconnections.	ning, Bulk and Surface micromachining,	4 Hrs.
UNIT 5		CO5
Microfluidics Components Micropumps, Check-valve pumps, Valve-less pum Centrifugal pumps, Ultrasonic pump, EHD pump, MHI Thermopneumatic valves, Thermomechanical valves, Electromagnetic valves, Capillary force valves.	D pumps, Microvalves, Pneumatic valves,	5 Hrs.

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

Text Books:

S. No.	Title	Author(s)	Publisher
1	Fundamentals and applications of Microfluidics	N.T. Nguyen and S. T. Werely	Artech House
2	Theoretical Microfluidics	H. Bruus	Oxford University Press

S. No.	Title	Author(s)	Publisher				
1	Fundamentals of Microfabrication	M. J. Madou	CRC Press				
2	Introduction to microfluidics	P. Tabeling	Oxford University Press				
3	Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices	B. J. Kirby	Cambridge University Press				
4	Microfluidics	S. Colin	John Wiley & Sons				
5	Microfluidics for Biotechnology	J. Berthier and P. Silberzan	Artech House				

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

Subject Code ME107825	Non-Conventional Energy Sources	L = 2	T = 1	P = 0	Credits = 3
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
The objective of the course to:	Students will be able to:
1. Discuss non-conventional sources of energy and explain the working of different solar energy applications.	
2. Explain the working principle of solar energy and working of solar energy conversion systems	
of different gasifiers	CO3: Ability to describe various biogas generation methods, discuss various factors affecting the
4. Discuss wind energy conversion systems and explain sources of geothermal energy.	and summarize the advantages and limitations
5. Describe the working principle of different fuel cells & OTEC.	of biomass gasifiers. CO4: Ability to discuss different wind energy conversion technologies, explain the working of different geothermal energy resources, describe the applications of geothermal energy.
	CO5: Ability to describe the working principle of different fuel cells, explain the working of open cycle and closed cycle OTEC systems, explain the working of single and double
UNIT 1	basin tidal power systems.
Introduction	COI
Energy source, India's production and reserves nonconventional energy sources, energy alterna power, wind biomass, ocean temperature different and oil shale, nuclear (Brief descriptions); ad (Qualitative and Quantitative). Solar Radiation: Extra-Terrestrial radiation, radiation, solar constant, solar radiation at the	tives, solar, thermal, photovoltaic. Water ace, tidal and waves, geothermal, tar sands wantages and disadvantages, comparison spectral distribution of extra-terrestrial
radiation, solar radiation data	4 Hrs.
UNIT 2 Solar energy storage system, Application of solar and cooling, solar photovoltaic, solar cooking industrial process heating, Solar power genera mechanical power, solar refrigeration & air condi	energy: solar water heating, space heating solar distillation & desalination, Solar tion. Solar Green Houses, Solar thermo
	5 Hrs.

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

UNIT 3	CO3
Energy from Biomass: Type of biomass sources, Energy plantation, Methods for	
obtaining energy from biomass,	
Biomass conversion technologies-wet and dry processes, Biodigestion,	
Community/Industrial biogas plants, Factors affecting biodigestion, Design of a biogas	
plant, Classification, advantages and disadvantages of biogas plants, Problems related to	
biogas plants, Utilization of biogas.	
Thermal gasification of biomass, Gasifier- classification, chemistry, advantages,	
disadvantages and application. Alcohol fuels from biomass: overview, feedstock, methods	
for alcohol production, Ethanol as an alternative liquid fuel; engine performance with	
alcohol fuels, biodiesel from biomass.	6 Hrs.
UNIT 4	CO4
Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and	
power from wind; major problems associated with wind power, wind machines; Types of	
wind machines and their characteristics, horizontal and vertical axis wind mills, elementary	
design principles; coefficient of performance of a wind mill rotor, aerodynamic	
considerations of wind mill design, numerical examples.	
Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental	
characteristics of tidal power, harnessing tidal energy, limitations.	
Geothermal Energy Conversion: Principle of working, types of geothermal station with	
schematic diagram, geothermal plants in the world, problems associated with geothermal	
conversion, scope of geothermal energy.	4 Hrs.
UNIT 5	CO5
Chemical Energy sources: Fuel cells -principle of operation of fuel cell, types of fuel cells	
-hydrogen- oxygen, solid-oxide, alkaline, polymer electrolyte membrane fuel cells,	
advantages, disadvantages and conversion efficiency of fuel cells, applications of fuel cells.	
Energy from the oceans: Ocean thermal energy conversion-open cycle and closed cycle	
systems, energy from tides – basic principle of tidal power, components of tidal power	
plants, single basin and double basin systems, ocean waves – wave energy conversion	
systems.	5 Hrs.

Text Books:

S. No.	Title	Author(s)	Publisher
1	Non-Conventional Energy Sources	G D Rai	Khanna Publishers. Delhi, 2010
2	Solar Energy-Principles of Thermal Collection & Storage	S P Sukhatme	Tata McGraw Hill Publishing Company Ltd., New Delhi

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

S. No.	Title	Author(s)	Publisher
1	Solar Energy Thermal processes	John A Duffie & William A Beckman	Wiley Interscience publication
2	Solar Energy - Fundamentals and Applications	P Garg & J Prakash	Wiley Interscience publication
3	Biomass to Renewable Energy Processes	Jay Cheng,	CRC press, 2009

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

Subject Code ME100841	Theory of Composite Materials	L = 3	T = 0	P = 0	Credits = 3
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives Course Outcomes	
The objective of the course to: Students will be able to:	
1. To be familiar with classification & CO1: Understand the basics of characteristics of composite material and their materials and their related str	-
 application. To gain the knowledge about manufacturing methods, testing and environmental issue related with composite material. To train students to be able to design composite structures, select composite materials, conduct 	elated with composite
stress analyses of selected practical applications using laminated plate theories appropriate strength criteria. temperature and failure CO4: Understand the laws related materials and effects of environment on composite be CO5: Understand the Static, dy stability analysis of composite	stress and haviour namic and
UNIT 1	CO1
Introduction to Composites Definition, classification/ types and characteristics of composite materials; Basic composite constituents – fiber and matrix; Properties of unidirectional long fiber and short fiber composites; Polymeric materials and polymeric composites; Honeycomb and Sandwich Composite Structure; Application areas of composites UNIT 2 Manufacturing, Testing and Environmental Issues Moulding, pultrusion, filament winding, other advanced manufacturing techniques; Quality	8 Hrs. CO2
inspection and testing – uniaxial tension test, uniaxial compression test, shear test, fracture toughness testing of composites. Environmental Issues related with composite manufacturing and their applications.	8 Hrs.
UNIT 3 Material Properties Orthotropic and Anisotropic materials; properties relating stress to strain, properties relating temperature to strain, properties relating moisture to strain, properties relating stress (or strain) to failure, Failure Criterion – Maximum Stress and Maximum Strain;	CO3
Review of force tensors, stress tensors, strain tensors UNIT 4 Composite Laminates	7 Hrs.
Thin-plate theory, classical lamination theory; Angle-ply and cross ply laminates; Static, dynamic and stability analysis for simple cases of composite plates; Inter-laminar stress behavior; Composite Joints; Design with Composites.	6 Hrs.
composite volue, zeagn mai composites.	

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

UNIT 5	CO5
Elastic Response Analysis	
Hooke's law for orthotropic and anisotropic materials; Linear Elasticity for Anisotropic	
Materials; Unidirectional composite laminates; Rotations of Stresses, Strains; Residual	
Stresses; Stress and environmental effects on composites behavior.	6 Hrs.

Text Books:

S. No.	Title	Author(s)	Publisher
1	Mechanics of Composite Materials and Structures	M. Mukhopadhyay	Universities Press, India
2	Analysis and Performance of Fiber Composites	B. D. Agarwal, L. J. Broutman and K. Chandrashekhara	John Wiley and Sons, New York
3	Fiber Reinforced Composites: Materials, Manufacturing and Design	P. K. Mallick	Taylor & Francis

S. No.	Title	Author(s)	Publisher
1	Primer on Composite Materials Analysis	J. C. Halpin	CRC Press
2	Composite Materials Technology: Processes and Properties	P. K. Mallick and S. Newman	Hanser Publishers
3	Stress Analysis of Fiber – Reinforced Composite Materials	M. W. Hyer	McGraw-Hill, Australia
4	Engineering Mechanics of Composite Materials	Issac M. Daniel and Ori Ishai	Oxford University Press

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

Subject Code ME100842	Microfluidics	L = 2	T = 1	P = 0	Credits = 3
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes
The objective of the course to:	Students will be able to:
 Understanding some laws and forces relevant to microfluidics. Understanding some advanced fluid mechanics relevant to micro scale device. Demonstrate a basic understanding of principle and processes of electro kinetics. Understanding microfabrication techniques and related materials. 	 CO1: Describe the basic laws and forces related to microfluidics. CO2: Describe the mechanism involved in advanced fluid mechanics. CO3: Describe the fundamentals of electro kinetics and analyze the flow related problems. CO4: Describe the various materials and
5. Make reasonable decisions about the microfluidic components, selection, options and performance.	techniques involved in microfabrication. CO5: Describe the performance of microfluidics components like micropumps and microvalves.
UNIT 1	CO1
Introduction	
Origin, Definition, Benefits, Challenges, Commercial	
Scaling laws. Intermolecular forces, States of matter	
equations, Constitutive relations.	8 Hrs.
UNIT 2	CO2
Micro-Scale Fluid Mechanics Gas and liquid flows, Boundary conditions, Slip theo	ry Transition to turbulence Low Re
flows, Entrance effects, Hydraulic resistance and C	
different cross-sections, Channels in series and parallel	
UNIT 3	CO3
Electrokinetics	
Electro hydro dynamics fundamentals, Electro-osmos electroosmotic flow, Ideal EOF with back pressure, C	ascade electroosmotic micropump, EOF
of power-law fluids. UNIT 4	6 Hrs.
Microfabrication Techniques	CO4
Materials, Clean room, Silicon crystallography, Mille	er indices Oxidation photolithography
mask, spin coating, exposure and development, Etch	
Wafer bonding, Polymer microfabrication, PMMA/CO	
embossing, fluidic interconnections.	4 Hrs.
UNIT 5	CO5
Microfluidics Components	
Micropumps, Check-valve pumps, Valve-less pum	
Centrifugal pumps, Ultrasonic pump, EHD pump,	

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

valves, Thermopneumatic valves, Thermomechanical valves, Piezoelectric valves, Electrostatic valves, Electromagnetic valves, Capillary force valves.

5 Hrs.

Text Books:

S. No.	Title	Author(s)	Publisher
1	Fundamentals and applications of Microfluidics	N.T. Nguyen and S. T. Werely	Artech House
2	Theoretical Microfluidics	H. Bruus	Oxford University Press

S. No.	Title	Author(s)	Publisher
1	Fundamentals of Microfabrication	M. J. Madou	CRC Press
2	Introduction to microfluidics	P. Tabeling	Oxford University Press
3	Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices	B. J. Kirby	Cambridge University Press
4	Microfluidics	S. Colin	John Wiley & Sons
5	Microfluidics for Biotechnology	J. Berthier and P. Silberzan	Artech House

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

Subject Code ME100843	Micro and Nano Manufacturing	L = 3	T = 0	P = 0	Credits = 3
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	100	20	30	150	3 Hours

Course Objectives	Course Outcomes		
The objective of the course to:	Students will be able to:		
 The objective of the course to: To give awareness of different techniques used in micro and nano manufacturing To give in-depth idea of the conventional techniques used in micro manufacturing To introduce Non-conventional micro-nano manufacturing and finishing approaches To introduce Micro and Nanofabrication Techniques and other processing routes in Micro and nano manufacturing To know different techniques used in Micro Joining and the metrology tools in micro and nano manufacturing. 	 CO1: To understand the different techniques used in micro and nano manufacturing CO2: To understand in-depth idea of the conventional techniques used in micro manufacturing. CO3: To understand about non-conventional micro-nano manufacturing and finishing approaches. CO4: To understand on micro and nano finishing processes. CO5: To understand and know about different techniques used in micro joining and the metrology tools in micro and nano 		
UNIT 1	manufacturing.		
Introduction to Precision engineering, macro milling and micro drilling, Micro-electromechanical systems — merits and applications, Micro phenomenon in Electro-photography — applications, Bulk micromachining, Surface micromachining- steps, Micro instrumentation — applications, Micro Mechatronics, Nano finishing — finishing operations, Laser technology in micro manufacturing- Practical Lasers, application of technology fundamentals, Micro-energy and chemical system (MECS), Space Micro-propulsion, e-Beam Nanolithography — important techniques, Introduction to Nanotechnology, Carbon Nano-tubes — properties and structures, Molecular Logic Gates and Nano level Biosensors — applications.			
UNIT 2 Introduction to mechanical micromachining, Mic applications, Micro turning- process, tools and applications, Micro milling and Mapplications, Micro extrusion- process and application Plastic forming and Roller Imprinting.	ications, Diamond Micro turning – Micro grinding – process, tools and as, Micro bending with Laser, Nano- 7 Hrs		
UNIT 3 Introduction to Non-conventional micro-nano man applications – Abrasive Jet Micro Machining, WAJ Micro EBM – Process principle, description and applications, For applications.	MM, Micro EDM, Micro WEDM, ications, Micro ECM, Micro LBM -		

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

UNIT 4	CO4
Introduction to Micro and Nano Finishing Processes, Magnetorheological Finishing (MRF),	
Processes, Magnetorheological abrasive flow finishing processes (MRAFF) – process	
principle and applications, Force analysis of MRAFF process, Magnetorheological Jet	
finishing processes, Working principle and polishing performance of MR Jet Machine,	
Elastic Emission Machining (EEM) – machine description, applications, Ion Beam	
Machining (IBM) – principle, mechanism of material removal, applications, Chemical	
Mechanical Polishing (CMP) – Schematic diagram, principle and applications.	7 Hrs.
UNIT 5	CO5
Laser Micro welding - description and applications, Defects, Electron Beam Micro-	
welding - description and applications, Introduction to micro and nano measurement,	
defining the scale, uncertainty, Scanning Electron Microscopy – description, principle,	
Scanning White-light Interferometry – Principle and application, Optical Microscopy –	
description, application, Scanning Probe Microscopy, scanning tunneling microscopy-	
description, application, Confocal Microscopy - description, application, Introduction to	
On-Machine Metro	6 Hrs

Text Books:

S. No.	Title	Author(s)	Publisher
1	Micro and Nano-manufacturing	Mark. J. Jackson,	Springer New York
2	Micro-fabrication and Nano- manufacturing - Pulsed water drop micromachining	Mark. J. Jackson,	CRC Press

S. No.	Title	Author(s)	Publisher
1	Micro-manufacturing and Nanotechnology	Nitaigour Premchand Mahalik	Springer Berlin, Heidelberg
2	Micro-manufacturing Processes	V.K.Jain Wendt, J.	CRC Press

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

Subject Code ME107891	Industrial Engineering and Management Lab	L = 0	T = 0	P = 2	Credits = 1
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	25	-	25	50	3 Hours

	Course Objectives	Course Outcomes
The	objective of the course to:	Students will be able to:
1.	To impart capability of successfully planning,	CO1: Ability to apply mathematics and science
	Controlling, and implementing projects.	in Industrial engineering.
2.	Understand and apply the principles of maths,	CO2: Ability to design and conduct
	science, technology and engineering, involving	experiments, as well as to analyze and
	industry-relevant problems.	interpret data.
4.	Contribute to the profitable growth of industrial	CO3: Ability to identify, formulates, and solves
	economic sectors by using IE analytical tools,	engineering problems.
	effective computational approaches, and systems	CO4: Ability to use the techniques, skills, and
	thinking methodologies.	modern engineering tools necessary for
5.	Maintain high standards of professional and	industrial engineering practice.
	Ethical responsibility.	CO5: Ability to design, develop, implement and
6.	Practice life-long learning to sustain technical	improve integrated systems that include
	Currency and excellence throughout ones career.	people, materials, information,
		equipment, and people.

EXPERIMENTS TO BE PERFORMED (MINIMUM TEN EXPERIMENTS)

- 1. To prepare the charts & diagrams for a selected problem according to the existing method and an improved method -men type flow process chart.
- 2. To prepare the charts & diagrams for a selected problem according to the existing method and an improved method -material type flow process chart
- 3. To prepare the charts & diagrams for a selected problem according to the existing method and an improved method -machine type flow process chart
- 4. To prepare the charts & diagrams for a selected problem according to the existing method and an improved method multiple activity charts.
- 5. Study of principles of fundamentals of hand motion.
- 6. Study & applications of principles of motion economy.
- 7. Performance of micro motion study of a job.
- 8. Problems in assignment of men & machines.
- 9. Training for a performance rating using walking exercises / audio visual aids.
- 10. Calculation of allowance for a job.
- 11. Standard time calculation problems.
- 12. Problems of wage incentive.
- 13. Stop watch time study of a job.

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

SYLLABUS B. Tech. Eight Semester- MECHANICAL ENGINEERING

Subject Code ME107892	Advance Manufacturing Lab	L = 0	T = 0	P = 2	Credits = 1
Evaluation	ESE	CT	TA	Total	ESE Duration
Scheme	25	-	25	50	3 Hours

	Course Objectives	Course Outcomes
The o	objective of the course to:	Students will be able to:
1.	To familiarize the students with advanced	CO1: To impart the knowledge of basic
	machine tools.	methodology of metal cutting.
2.	To familiarize the students with extrusion based	CO2: Program a CNC turning or milling
	additive manufacturing	machine for preparing a job.
3.	To acquaint the students with traditional and	CO3: Evaluate the process parameters involved
	nontraditional machining process	in CNC machining.
4.	To introduce the manufacture of polymer	CO4: Analyze the principles of Robot
	composites.	programming and carryout hands-on
5.	To introduce the concepts of thin film-based	practice.
	deposition process.	CO5: Elaborate any nonconventional machining
		process and 3D printing.

EXPERIMENTS TO BE PERFORMED (MINIMUM TEN EXPERIMENTS)

- 1. Face milling operation using CNC simulator.
- 2. Drilling operation using CNC simulator.
- 3. Turning operation using CNC simulator.
- 4. Boring operation using CNC simulator.
- 5. Slotting operation using CNC simulator.
- 6. Making a pocket using CNC simulator.
- 7. Making a spigot using CNC simulator.
- 8. Pick & place operation by robotic arm.
- 9. Electrical discharge machining process using EDM simulator.
- 10. Extrusion based additive manufacturing.
- 11. Micro machining of 3D parts using mechanical micro machining system.

		July 2022	1.00	Applicable for AY 2022-23
Chairman (AC)	Chairman (BoS)	Date of release	Version	Onwards